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Introduction

m Ralph Foorthuis
Lead architect data domain at UWV

m This presentation gives an overview of several publications:
o A Typology of Data Anomalies, Proceedings of IPMU 2018

o SECODA: Segmentation- and Combination-Based Detection of
Anomalies, Proceedings of IEEE DSAA 2017

o Anomaly Detection with SECODA, Poster Presentation at IEEE
DSAA 2017

o Data examples and resources for R at www.foorthuis.nl
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SECODA

s A novel general-purpose anomaly detection
algorithm

m Unsupervised
m Non-parametric
m Allows analysis of mixed data (numerical & categorical)

s The method is guaranteed to identify cases with
unique or sparse combinations of attribute values.
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Anomaly detection

Anomaly detection (AD) aims at identifying data cases that
are in some way awkward and do not appear to fit the
general pattern(s) present in the dataset.

AD is useful for fraud detection, data quality analysis,

security scanning, data cleansing/modelling, system
monitoring, etc.

Several types of anomalies can be acknowledged.
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Related research

m A substantive body of research on AD is available [1, 7, 14, 23].

m AD originally involved statistical parametric methods that focus on
univariate outliers [3, 16].

m Non-parametric multidimensional distance-based methods [8, 24] focus
on the distance between individual data points and their nearest
neighbors. This has been advanced throughout the years in order to also
take into account larger datasets as well as categorical attributes [18, 19,
20, 21, 25].

- Density-based approaches focus on the amount of data points in each
point’s neighborhood [4, 5, 26]. Anomalies are found in low-density
areas. The histogram-based technique is one of the traditional methods.

= Examples of complex non-parametric statistical models for AD are One-
Class Support Vector Machines [27], ensembles [28, 29] and various
subspace methods [1, 30, 49].

= . - —_— R — =

The SECODA Algorithm for the Detection of Anomalies in Sets with Mixed Data



Typology of Anomalies

m Gives an overview of the types of anomalies.

m Provides a theoretical and tangible understanding of
the types of anomalies.

m Aids in evaluating which types of anomalies can be
detected by a given AD algorithm.

m Assists in analyzing conceptual levels of patterns and
anomalies, and comparing between typologies.
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Dimensions of the typology

Differentiates between the ‘awkward cases’ according to
two fundamental dimensions regarding data:

m The data types that describe the behavior of the cases:
numeric, categorical or both.

m The cardinality of relationship: whether anomalous
behavior should be attributed to individual and

independent variables (univariate) or to the relationship
between variables (multivariate).

These dimensions naturally and objectively yield six basic
types of anomalies.
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Typology of Anomalies

Continuous Categorical Mixed
attributes attributes attributes

Univariate Type | Type I Type IlI

Dreeitlose [0y nel- Extreme value Rare class Simple mixed
vidual attributes
(independence) anomaly anomaly data anomaly

Multivariate
Type IV Type V Type VI

Described by multi- . . o . o .
dimensionality Multidimensional Multidimensional Multidimensional

(dependence) numerical anomaly rare class anomaly mixed data anomaly
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From: Foorthuis (2018), ‘A Typology of Data Anomalies’, IPMU 2018.
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Type I - Extreme value anomaly

m A case with an extremely high, low or otherwise rare value for
one or multiple individual numerical attributes [cf. 1, 3, 56, 57].

m Such a case has one or more numerical values that can be
considered extreme when the entire dataset is taken into
account.

L Univariate: Can be identified by focusing on individual
attributes. There is no need to analyze attributes jointly.
However, a case is more anomalous if it has multiple attributes
with extreme values.

m Traditional univariate statistics typically considers this type of
outlier, e.g. by using a measure of central tendency plus or
minus 3 times the standard deviation.
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Type I - Extreme value anomaly
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Type II - Sparse class anomaly

m A case with a rare class value on one or multiple categorical
attributes [cf. 17, 56, 57].

0 Such a case has one or more class values that can be

considered rare when the entire dataset is taken into
account.

m Univariate: Can be identified by focusing on individual
attributes. There is no need to analyze attributes jointly.
However, a case is more anomalous if it has multiple
attributes with sparse classes.
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Type II - Sparse class anomaly

58

The only data point
of class “green”




Type III - Simple mixed data anomaly

m A case that is both a Type I and Type II anomaly, i.e.
with at least one extreme value and one rare class.

m This anomaly type deviates with regard to multiple data
types.

m  Requires deviant values for at least two attributes, each
anomalous in its own right.

m  Univariate: Can be identified by focusing on the
individual attributes.
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Type III - Simple mixed data anomaly

The only data point
of class “green”
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Type IV - Multidimensional numerical anomaly

m A case that does not conform to the general pattern when
multiple numerical attributes are taken into account, but
does not feature extreme values for any of its individual
numerical attributes [cf. 14, 15, 56, 57].

m  Multivariate: Focuses on multiple attributes. Such cases
hide in multidimensionality [cf. 2], so several attributes

have to be analyzed jointly to detect that they are located
in an isolated area.
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Type IV - Multidimensional numerical anomaly
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Type IV - Multidimensional numerical anomaly

Average Wage
2200 2400 2600 2800 3000 3200 3400
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It's only strange in that short time period
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Type V - Multidimensional rare class anomaly

m A case with a rare combination of class values.

= A minimum of two substantive categorical attributes
needs to be analyzed jointly to discover a multidimen-
sional rare class anomaly.

m  An example is this curious combination of values from
three attributes used to describe dogs: ‘"MALE’, ‘PUPPY’
and ‘PREGNANT".

m In datasets with dependent data points the class values
can be from one substantive attribute.
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Type V - Multidimensional rare class anomaly
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Type VI - Multidimensional mixed data anomaly

m A case with a categorical value or a combination of categorical
values that in itself is not rare in the dataset as a whole, but is
only rare in its neighborhood (numerical area) or local pattern
[56, 57].

m Multivariate: Focuses on multiple attributes. Such cases hide in

multidimensionality and multiple attributes need thus to be taken
into account jointly to identify them.

= In fact, multiple datatypes need to be used, as a type IV anomaly
per definition contains both numerical and categorical data.

m Cases can also take the form of second- or higher-order anoma-
lies, with categorical values that are not rare (not even in their
neighborhood), but prove to be rare in their combination in that
specific area. See the DSAA paper for an example.
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Type VI - Multidimensional mixed data anomaly

Some points seem
to be misplaced,
having the wrong
color in their
neighborhood




The SECODA algorithm

o Largely density-based (histogram-based approach).

o Employs discretization of continuous attributes to jointly take
into account both categorical and numerical variables
(concatenation trick).

m  Concatenations (combinations) of attributes are referred to as
constellations when determining their density.

m  Works iteratively so as to obtain ever narrower discretization
intervals, which avoids arbitrary and suboptimal bin sizes.

m  Can capture interactions and other relationships between
variables.

. Uses exponentially increasing weights and arity.
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The concatenation trick

m  An operation that facilitates the joint analysis of categorical and
continuous (numerical) attributes.

m Combines continuous and nominal attributes into a string value.

m The concatenation trick requires the discretization of the continuous
variables, so that they can be combined (concatenated) with the
categorical variables into a single string — and subsequently
analyzed.

m Recursive discretization can minimize discretization error and,
depending on the goal, result in precise numerical analysis.

m Concatenation also allows for capturing relationships between the
attributes.
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The SECODA process

1. The process starts by discretizing the continuous attributes into b = 2
equiwidth bins (i.e. equal interval ranges) in the first iteration.

2. Each case’s categorical and discretized numerical values are then
concatenated, which yields the constellations on which the joint density
distribution will be based.

3. By subsequently calculating the constellation frequencies (density) it can
be determined how rare each case is in the current iteration /.

4, Each case g's average anomaly score aas,,; can be calculated in each
iteration / by calculating the arithmetic mean of the case’s current
constellation frequency and its average score of the previous iteration.

In the next round this process is repeated with a higher number for b.

6. The algorithm converges when a given fraction of the cases in the
original dataset has a score below the anomaly threshold.

m The fraction is set to 0.003 (cf. 3 times the standard deviation).
m The anomaly threshold starts at 1 (i.e. a truly unique case).
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ID | Input attributes
1 | 111 A
4 | 219 C
3 | 166 B Discretize &
2 |1 A concatenate
2 | 128 A
Score & 4 | 300 B

re-iterate

Concatenations
“1-2.1-150.A”
“3-4.150-300.C”
“3-4.150-300.B”
“1-2.1-150.A”
“1-2.1-150.A”
“3-4.150-300.B”

o |u|h|lw Nk (g

= Count

constellations
CID Constellations

#
1-2.1-150.A 3
1
2

3-4.150-300.C
3-4.150-300.B
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Input attributes
(1) 1112 | A
4 |219 | c
3 | 166 B Discretize &
2 |1 A concatenate
2 128 A
Score & 4 | 300 B

re-iterate

Concatenations
(1-2)1-150.A”
“3-4.150-300.C"
“3-4.150-300.B”
“1-2.1-150.A”
“1-2.1-150.A”
“3-4.150-300.B”

o |u|h|lw Nk (g

= Count

constellations
CID Constellations

#
1-2.1-150.A 3
1
2

3-4.150-300.C
3-4.150-300.B
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ID | Input attributes
1 |(111) | A
4 1219 | C
3 | 166 B Discretize &
2 |1 A concatenate
2 | 128 A
Score & 4 | 300 B

re-iterate

Concatenations
“1-2(1-150)A”
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The SECODA process

Tactics for speeding up the analysis:

m  Exponentially increasing weights: The last iteration weighs
as much as the previous iterations combined (i.e. implicit
weights). This also prevents bias.

m  Pruning heuristic: Prunes away that part from the search
space that represent the most normal cases.

m Increased arity: Increasing the number of discretized bins
with larger steps as the analysis process continues.
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Algorithm: SECODA

Inputs: Dy, the original matrix with n cases and p attributes. =
Output: aas;, a vector of average anomaly scores after the last itera-
tion for all cases in Dy, with aasg; representing the individual score.

Key local vars: b, the number of discretization bins (arity).
s, used as stop point and for increased binning.
cfyi, the current frequency in iteration i of the
constellation to which case g belongs.
begin
i < 0;b« 2;s« 1;continue < TRUE # Set initial values

while contine = TRUE do See the paper and R code for precise

ID(’_<—Il;).. with numerical attributes discretized into b equiwidth bins i m p | e m e n ta ti O n a n d d eta i | ed CO m m e ntS .

cfyi < ConstellationFrequencyPerCase(D’)

if i > 1 # Calculate average anomaly scores for cases in D;

a8 H{aasyi +ofy) URL: www.foorthuis.nl
else # If it’s the first iteration, put in the frequency
aasy; < Cfy;
end if
if i <10 # Iteration management
Se<s+0.1
be—b+1
else # Take larger steps and prune cases in higher iterations
Ses+1 Algorithm: ConstellationFrequencyPerCase
beb+(s-2) Inputs: D’, containing p (categorical and discretized numerical) attributes and a total of n cases, with n <noc(D).
# Add to aasp; the anomaly scores of the 5% most normal cases Output: cfj, a vector with for each case cfy; the frequency of the constellation to which the case belongs in the current iteration.
that are to be pruned away: begin
p < subset of aas;, with each aasy; > 0.95 quantile value , . . - . . . .
aasp; — aaspyy U p # Concatenate each case’s attribute values in this iteration (i.e. determine the constellations):
# Prune away high-frequency (normal) cases for next iteration: CCqi < d’g-lvi & d’g,Z,i ®.® dévpvi
Di.1 < subset of D;, with each case such that # Determine the frequency of distinct constellations in this iteration (with & identifying the constellations):
its aasy; < 0.95 quantile value ccfii <= The number of cases per constellation
end if # Determine the frequency of each case, using the frequencies of their constellations (i.e. inner join cc; and ccf; on k):
Q < Subset of D;, with each case such that its aasy; <s cfyi <= The frequency from ccfy; for each case’s corresponding constellation
if (noc(Q) / noc(Dy)) > 0.003 # Verify fraction of identified anomalies return cf; # Return each case’s current frequency cfgy; as the elements of a vector
continue < FALSE # No new iteration (process has converged) end
end if
end while

aas; < aas; U aasp;.; # Combine average anomaly scores from latest

iteration with scores from cases that have been pruned previously

return aas; # Return full anomaly score vector as the end result .

end (e 2
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Algorithm evaluation

Three types of evaluations:

1. Simulated datasets are used to study whether SECODA is
capable of identifying the different types of anomalies.

2. Two real-world datasets with labeled anomalies (test sets)
are used to evaluate SECODA with ROC & PRC curves and
related performance metrics.

3. The results of a real-world data quality use case are
presented.

Experiments were conducted in R 3.3.2.
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1. Simulations

All six anomaly types were identified in the simulated datasets.
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2. Test sets

Time performance scales linearly with dataset size.

Time performance of different SECODA versions

1200

Pruneless

1000

800
I

Stepless Thus the heuristics are
effective in speeding

up the analysis.

600
]

Final

400
I

But: does the final
algorithm with the
heuristics perform as
well as the others?
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]

Time performance (as index)

0
|

T
Vs s ¥ Y5 %%
Dataset size

- = = e - - = = == — — o

= =~ — — ——— B . - =

The SECODA Algorithm for the Detection of Anomalies in Sets with Mixed Data 2017-2018 Foorthuis




2. Test sets

Functionality:
ROC & PRC -

Final SECODA’s 95% confidence interval (vertical averaging)

For testing the
performance of
the different
versions of

the algorithm

. Sensitivty (%) _

Final
Pruneless
Stepless

40

" Specificity (%)
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2. Test sets

Functionality:
M etrics SECODA version Best Matthews Best Youden
Final Pruneless Stepless CC threshold ROC threshold
ROC AUG 99.2472101% 99.2612359% 99.2934346% (5.3622) (42.4671)
(95% CI) (98.3030214%- (98.2368757%- (98.4734947%- Sensitivity/Recall 0.9056604 0.9528302
99.8237980%) 99.8936765%) 99.7952676%) Specificity 0.9984405 0.9852401
ROC partial AUC 97.5908842% 97.9739000 97.5786719% o Precision/PPV 02742857 0.0403194
for 100-90% (95.6997905%- (96.1351669%- (95.9015903%- g
specificity (95% 99.0829036%) 99.4404026%) 98.9350227%) ] Accuracy 0.9983802 0.9852190
1)) 2 F1 measure 0.4210526 0.0773651
ROC partial AUC 96.3403181% 96.4181925% 96.5967076% Matthews CC 0.4979220 01944046
for 100-90% (91.4859672%- (91.0116888%- (92.5246381%- .
sensitivity (95% 99.3746080%) 99.7348309%) 99.2143688%) Cohen’s Kappa 0.4204740 0.0762121
ch
99.9994304% 99.9994193% 99.9994811%
F(’gsg/oAgf): (99.9986572%- (99.9985530%- (99.9988207%- ] . ] ]
et o0 99.9998829%) 99.9999290%) 99.9998658%) No sign ificant differences exist between
P-value (two-side . .
of pair-wisepartial | _— S the individual curves, nor between the
; ith Pruneless: ith Stepless: ith Final: . . H -
specificity used to boost the time performance of

SECODA do not have an adverse effect
on its functional ability to detect true

Confidence intervals have been calculated with anomalies.

10000 stratified percentile bootstrap resamples.
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3. Real-world Polis Administration case

-4000 2000 0 2000 4000
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3. Real-world Polis Administration case

-4000 2000 0 2000 4000

Different types of
anomalies were
detected.
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Discussion

N No need for SECODA to calculate point-to-point distances or
associations.

m Low memory requirements.
m  Can deal with complex relationships between variables.

m  The concatenation trick facilitates the analysis of mixed data and
missing values, and is not affected by multicollinearity.

5 Exponentially increasing weights: This speeds up the analysis,
prevents bias and results in a low memory imprint.

m The pruning heuristic is a self-regulating mechanism during
runtime and dynamically decides how many cases to discard.

m Affords parallel processing.

m Alas, the curse of dimensionality still holds (depends on the
amount of attributes, cases, classes, distribution, etc).
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Discussion

SECODA bears similarities with:

m Density-based algorithms. Mainly histogram-based, as used
in e.g. intrusion detection systems [6, 22, 33, 34, 50, 51].

m Ensembles, especially iForest [28, 29].
m The high-dimensional outlier detection presented in [6].

SECODA and AD can contribute to several well-known data
quality aspects [cf. 12, 44, 45].

m Correctness of individual values

m Completeness of cases

m Consistency between attribute values
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Contributions

m Introduction of a typology of anomalies, which can be used for
understanding the different anomaly types in datasets and the
evaluation of AD algorithms.

5 New general-purpose algorithm for the detection of multiple
types of anomalies.

M Shown that complex anomalies can be identified by a relatively
simple algorithm using basic data operations (without point-to-
point calculations or complex fitting procedures). This allows in-
database analytics, parallel processing and the analysis of very
large datasets.

B The real-world case shows that SECODA, and AD in general, can
be used in practice to improve data quality.
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