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Dutch alliance on income data and taxes: Loonaangifteketen

Tax and Customs Office, UWV and Statistics Netherlands
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Some 20 million income relationships (a.o. ‘payroll’ data / ‘salary slips’) @\F 1) E—
Annual collection of about 150 billion euros of taxes oo b B
Largest source of income for the government of The Netherlands s

Very large ecosystem in terms of stakeholders, IT, processes and data (input & output)
Goals: Taxes, Data, Lowering of administrative burden
Won the ASAP Alliance Excellence Award in 2017
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UWYV Enterprise
Achitecture

Data used in:
= Internal processes
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Operational process

Compliance with data quality standards is verified at several locations in the chain, depending on the type of check.

]
1
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L‘_L Quality report Tax & Customs Service
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LA message — XML format Taxes, wages, yearly income
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Data specifications

Semantics, formats, allowed values
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experiments
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Anomaly detection

(I

11

Identifying anomalies (deviant cases) by employing non-trivial algorithms.
Anomalies are cases that do not fit the general patterns in the dataset.

There are many potential causes that could explain the anomaly. The
deviation may very well point to incorrect data.

Also known as outlier detection and novelty detection.
Application areas:

o Data quality

o Fraud detection

o Error detection and process monitoring
o Information security RN .
- Building statistical models Ly, 7

-
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Typology of anomalies

Types of data
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Described by multi- . : o : . .
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From: Foorthuis (2018), ‘A Typology of Data Anomalies’, IPMU 2018.
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SECODA

m SECODA is a novel generally applicable algorithm for

anomaly detection

m  An algorithm: a series of instructions (processed by a O
computer) that leads from a starting state to a target S 5|
state 0

m SECODA can be characterized as:

o Unsupervised: Analyzes data that have not been
seen and labelled by humans before

o Non-parametric: Does not have any assumptions
regarding the distribution of the data

o Can analyze mixed data (numerical & categorical)
o Multivariate analysis (takes relationships into account)
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The SECODA
algorithm

ID | Input attributes

1 1 | 111 A
2 4 | 219 C
3 3 166 B Discretize &
4 2 1 A concatenate
5 2 | 128 A

Score & 6 4 | 300 B

re-iterate

Concatenations
“1-2.1-150.A”
“3-4.150-300.C”
“3-4.150-300.B”
“1-2.1-150.A"
“1-2.1-150.A"
“3-4.150-300.B”

o |un|h|lw Nk

Count

constellations
Constellations

1-2.1-150.A
3-4.150-300.C
3-4.150-300.B

WIN|=
N[ w3
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Algorithm: SECODA -
Inputs: D, the original matrix with n cases and p attributes. T h S E C o DA I t h
Output: aas;, a vector of average anomaly scores after the last itera- e a g o r I m
tion for all cases in Dy, with aasy; representing the individual score.
Key local vars: b, the number of discretization bins (arity).
S, used as stop point and for increased binning.
cfyi, the current frequency in iteration i of the
constellation to which case g belongs.
begin
i «0;b« 2;s¢« 1;continue < TRUE # Set initial values
while confinue = TRUE do See the DSAA 2017 paper and open source R code for
i «— i + 1 - - - -
" Dywith numerical attibutes discreized nto b equwidh bins precise implementation and detailed comments.

cfy; < ConstellationFrequencyPerCase(D’) \ ’ .
ifi > 1 # Calculate average anomaly scores for cases in D; (See SECO DA resources for R at WWW-foorthL“S- nl/)

aasg <« %(aasg,i.l +cfy)
else # If it’s the first iteration, put in the frequency
aasyi < Cfy;
end if
if i <10 # Iteration management
s—s+0.1
b—~b+1
else # Take larger steps and prune cases in higher iterations
ses+1 Algorithm: ConstellationFrequencyPerCase
be—b+(s-2) Inputs: D’, containing p (categorical and discretized numerical) attributes and a total of n cases, with n < noc(Do).
# Add to aasp; the anomaly scores of the 5% most normal cases Output: cf;, a vector with for each case cfy; the frequency of the constellation to which the case belongs in the current iteration.
that are to be pruned away: begin

p < subset of aas;, with each aasy; > 0.95 quantile value , . . L. . . . .
aaspi— aaspis U p # Concatenate each case’s attribute values in this iteration (i.e. determine the constellations):
i i-1

# Prune away high-frequency (normal) cases for next iteration: CCqi <~ dg1i @ dig2i @ .. ® diypi
Di.; < subset of D;, with each case such that # Determine the frequency of distinct constellations in this iteration (with & identifying the constellations):
its aasy,; < 0.95 quantile value ccfyi < The number of cases per constellation

end if # Determine the frequency of each case, using the frequencies of their constellations (i.e. inner join cc; and ccf; on k):
Q < Subset of D;, with each case such that its aasy; <s cfqi <= The frequency from ccfy; for each case’s corresponding constellation
if (noc(Q) / noc(Dy)) > 0.003 # Verify fraction of identified anomalies return cf; # Return each case’s current frequency cfy; as the elements of a vector

continue « FALSE # No new iteration (process has converged) end
end if

end while

aas; < aas; U aasp;.; # Combine average anomaly scores from latest
iteration with scores from cases that have been pruned previously
return aas; # Return full anomaly score vector as the end result
end
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Practitioner case at UWV

PLM engine

- Parameterized data extraction module (“Parametriseerbare Lever Module”).
- Two representative (anonymized) samples from the Polis Administration.

« A data point or case in these datasets represents an income relationship.

Analysis ignoring any domain knowledge
« The 30 most extreme anomalies were scrutinized.
« These can indeed all be considered data anomalies (see 4D plot).
» All possible anomaly types were present.

Analysis taking into account domain knowledge
« Most anomalies could be explained as normal or could not be proven erroneous.

- However, several identified anomalies (positioned both isolated and in-cloud) did prove to be
indicative of previously unknown data quality problems. Interestingly, the anomalies represented a
broader issue and turned out to be data export complexities rather than errors in the stored data.

« These results resulted in changes to improve the operational data delivery software.
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Findings on unsupervised anomaly detection

Academic findings

« The typology offers a theoretically and empirically justified overview of anomaly types.
-« SECODA is able to identify all acknowledged anomaly types (for independent data).
« See the publications for details.

Practical findings

« Anomaly detection (AD) is useful for finding quality issues in real-world administrative data.

- There was a substantial overlap between anomalies found by AD and the cases
that were identified by manual quality queries.

Especially valuable for exploratory analysis, in settings in which one lacks deep domain
knowledge, and when a predominantly data-driven analysis is desired (e.g. to complement a
rule-based data quality approach).

Anomalies do not necessarily represent erroneous data.

For interpretation it is important to have functional knowledge of the AD algorithms.
Data visualization is also essential for understanding the anomalies.
High-dimensionality remains a problem.
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SECODA evaluation and uncertainty

We can discuss uncertainty in terms
of ROC, PRC, full and partial AUC,
p-values, confidence intervals,
confidence bands, Sensitivity,
Specificity, Precision, Accuracy, F1
measures, Matthews CC, Cohen'’s
Kappa, etc.

But see the DSAA publication for
that. Let’s focus on other aspects.
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Discussion

Anomaly detection research generally ignores the
different anomaly types. Often nothing is known
with regard to these types and characteristics of
the anomalies. (The dataset could thus be called
a ‘black set’.) However, if you don’t know the
dataset you are using for evaluating your
algorithm, then the results are hardly convincing.
So ensure you know your data and especially
which types of anomalies are present in order to
obtain insights in how the evaluated algorithm
performs.

Moreover, in order to improve understanding of
the data and the algorithm — and thus to

decrease uncertainty — the analysis or evaluation
should also be done per anomaly type.

This provides deeper insights. For example, it
may show that certain types can be detected
better and with less statistical uncertainty than
other types.
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Discussion

Some thoughts on uncertainty and knowledge in the context of data quality verification...

Syntax- and rule-based quality verification

- Driven by rules, laws, regulations, technical data formats

The rules here are based on national laws and strict norms regarding the data model
Able to verify complex consistency demands between attributes

Rule-based quality verification can yield conclusions that are (more or less) 100% true
Sounds comforting — and works especially well for compliance purposes

But... it's also a bit tautological. Not suited for yielding new ideas & knowledge

Unsupervised anomaly detection

24

 Algorithmic and truly data-driven; no rules needed

« Able to discover complex inconsistencies between attributes

- Uncertain results; anomalies are not guaranteed to represent erroneous or interesting data
« Results are based on the idiosyncrasies of the algorithm (and the given data distribution)

* You cannot simply automate the decision making process that follows the anomaly detection

- But... it helps discover unexpected and surprising phenomena, and facilitates the creation and expansion
of your domain knowledge

(Un)certain Anomalies in Income Data Gloonaangif‘teketen UWV



Questions?
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